Swing Leg Control for Efficient and Repeatable Biped Walking to Emulate Biological Mechanisms

Takayuki Kawabe, Takuma Honda, and Takafumi Koseki
Department of Electrical Engineering and Information Systems, School of Engineering
The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, Japan
Email: kawabe@koseki.t.u-tokyo.ac.jp

Abstract—This paper presents a energy efficient swing leg control method based on biological structures in the swing phase. In this method, structural features and the activation pattern of muscles are taken into account. An electromyogram result of human walking indicates that humans use the passive and active mode change and also they have typical activation pattern of muscles, especially hamstrings. Hamstrings are a pair of bi-articular muscles of a lower limb. The straight line relationship connected between hip and ankle joint is derived from structural features of this muscles. This relationship is incorporated into muscle-based landing position control in order to achieve more intuitive and effective control. Finally, the effectiveness of the proposed control method is evaluated by comparison with a conventional walking control in a numerical case study.

I. INTRODUCTION

Technologies for humanoid robots which is based on conventional structures and control methods have been greatly advancing recently. On the other hand, some researchers who study biology and medical science indicate that there are many differences between conventional robots and humans. For that reason, biological subjects have been focused on to make a breakthrough. As a typical example, humans have bi-articular muscles which connect two joints and generate contractive force simultaneously. It is said that bi-articular muscles have been played an important role in human [1] and robot [2] motion control.

In this paper, human-like landing position control is proposed. The standard control method in the swing phase is to control each joint angle to track a given continuous trajectory with feedback control. By contrast, humans do not have a leg trajectory and use feedback signals (except for visual information) because humans have these system inside their muscles. The proposed method only uses bi-articular muscle signals with simplified musculoskeletal structures. The approach is based on antagonistic muscle control proposed by N. Hogan [3] and K. Ito et al., [4]. In addition, K. Yoshida et al., demonstrated this control method with bi-articular muscle [5]. However, these studies were only applied for a robotic arm and did not mention passivity and biological structures excluding antagonistic muscles. The most important characteristic of human walking is high energy efficiency. P. Kormushev et al., experimentally achieved the biped walking energy minimization with actual springs [6]. D. P. Ferris et al., claimed that humans modulate the viscoelasticity during environmental interaction [7]. As well as these studies, the authors focused on the modulation of muscle viscoelasticity from the point of view of mono- and bi-articular muscles coactivation. In addition to that, simple landing position control should be designed for practical use. Therefore, the authors proposed intuitive landing point design method modulating muscle viscoelasticity for the purpose of human-like energy efficient walking.

First, human’s muscle activity is investigated, especially in bi-articular muscles which is called “hamstrings”. The authors emphasize this muscle works to realize both high energy efficiency and simple landing position control in the swing phase. Second, the authors mention the intuitive design method of landing position and how to vary the leg viscoelasticity is discussed. Finally, the effectiveness of the proposed control method is evaluated by simulations.

II. THE INVESTIGATION OF MUSCLE ACTIVITY DURING THE SWING LEG ACTION

Fig. 1 shows the effective muscle model [1] which is simplified muscle activity of a lower limb. Note that bi-articular muscles, the main interest of our approach, are mainly located in sagittal plane, therefore the following study have been discussed in this sagittal plane model.

As a next step, details of muscle activation have been examined. According to an electromyogram (EMG) of a lower

Fig. 1. Effective muscle model of a lower limb. (‘e’ and ‘f’ mean extensor and flexor muscle.)
In (2), subscripts \(f \) and \(e \) denote flexor and extensor muscle. In short, humans can adjust \(u_f \) and \(u_e \) to obtain the desired impedance characteristics.

In (3), \(\theta \) is angle of each joint defined by Fig. 3 and subscripts “h” and “k” denote “Hip” and “Knee”. Note that \(\theta \) should be written in the displacement from the natural angle \(\theta_0 \) which is defined by the natural length of muscle \(l_0 \). This time, however, the natural angle is set to zero for convenience.

Here, the moment arm length \(r \) of hamstrings is focused. In case of Rectus femoris (e3), both side of the length of moment arm \(r_h \) and \(r_k \) is almost the same [8]. By contrast, in case of hamstrings (f3), the length of moment arm of hip is about twice as long as that of knee. The length of moment arm is generally vary with angle, however this relationship is almost satisfied in the swing phase [11].
If this relationship is adopted, the ratio of moment arm is \(r_h : r_k = 2 : 1 \) in hamstrings. The joint torque of hip (\(T_h \)) and knee (\(T_k \)) are described as (5) and (6).

\[
F = u - k_r u_r (\theta_h - \frac{1}{2} \dot{\theta}_h) - b_r u_r (\dot{\theta}_h - \frac{1}{2} \ddot{\theta}_h) \quad (4)
\]

\[
T_h = -r \{ u - k_r u_r (\theta_h - \frac{1}{2} \dot{\theta}_h) - b_r u_r (\dot{\theta}_h - \frac{1}{2} \ddot{\theta}_h) \} \quad (5)
\]

\[
T_k = \frac{1}{r} \{ u - k_r u_r (\theta_h - \frac{1}{2} \dot{\theta}_h) - b_r u_r (\dot{\theta}_h - \frac{1}{2} \ddot{\theta}_h) \} \quad (6)
\]

It is reasonable that muscle force effects hip joint stronger than knee joint because the lower part of a leg can be moved easily.

If the length of each link is the same as humans, \(\dot{\phi} = \theta_h - \frac{1}{2} \theta_k \) can be expressed as the straight line which connects hip joint and knee joint. As shown in Fig. 3, this relationship looks like a simplified compasses model. \(\Delta x = r \Delta \phi \) denotes deviation of hamstrings length from the natural length \(l_0 \). Given that the value of \(\Delta x \) becomes large, feedback terms described in (5) and (6) also increase in order to reduce deviations.

Thus, this relationship implies that humans use hamstrings to employ the straight line relationship between hip and knee joint.

V. MATHEMATICAL EXAMINATION OF MUSCLE ACTIVATION PATTERNS

It is necessary to incorporate antagonist activation to set the landing position. From (2), it can be balanced \((u_f - u_e) \) with \(k(u_f + u_e) \) at an equilibrium point. For that reason, \(u_f \) and \(u_e \) should be adjusted to set given point.

For example, antagonist muscles work in the plane surface without any disturbance [4] [5]. Joint torque can be expressed as (7).

\[
T = r(u_f - u_e) - k_r u_r (u_f + u_e) \theta - b_r^2 (u_f + u_e) \dot{\theta} \quad (7)
\]

In steady-state condition, \(\dot{\theta} \) and \(\ddot{\theta} \) become zero. Hence, \(\theta \) is given by (8).

\[
\theta = \frac{u_f - u_e}{kr(u_f + u_e)} \quad (8)
\]

That is, the ratio of \(u_f \) and \(u_e \) defines the angle of equilibrium point.

According to the previous section, humans do not use all their muscles simultaneously. Let us suppose the case (f3), (e1), and (e2) muscles act antagonistically. Here, a biped model shown in Fig. 4 is used.

A. Muscle activation model in the swing phase

At first, the non-linear equation of the biped walking model is taken into account, especially gravity effects. \(d_i \) consisting of non-linear equation of motion and disturbance is introduced for the moment. In steady-state condition, \(\dot{\theta}_2, \dot{\theta}_3, \dot{\theta}_3 \), and \(\ddot{\theta}_3 \) are set to zero. Hence, major components of \(d_i \) are interference term of \(\dot{\theta}_1 \) and gravity term. In conventional robots, precise position tracking can be achieved by suppressing the effects of \(d_i \). On the other hand, passivity based robots achieve high energy efficiency by employing the effects of \(d_i \). The authors have emphasized that humans have both advantages. It is shown in following analysis.

The length of moment arm \(r \), elastic coefficient \(k \), and viscous coefficient \(b \) for each muscle are regarded as the same value for simplicity. Most important characteristics are that bi-articular muscle (f3) acts two adjacent joints with different length of moment arm. In case of mono-articular muscles, this difference will be corporated into muscle contraction units \(u_i \).

If (f3), (e1), and (e2) muscles act antagonistically, joint torques are described in (9) and (10).

\[
T_2 = (r \dot{u}_2 - r \dot{u}_{23}) - r^2 k u_2 \theta_2 - r^2 k u_{23} \theta_2 - \frac{1}{2} \dot{\theta}_3 \\
= r^2 b u_2 \theta_2 - r^2 b u_{23} \theta_2 - \frac{1}{2} \dot{\theta}_3 + d_2 \\
T_3 = (\frac{1}{2} r \dot{u}_{23} - r \dot{u}_3) - r^2 k u_3 \theta_3 + \frac{1}{2} r^2 k u_{23} \theta_2 - \frac{1}{2} \dot{\theta}_3 \\
= r^2 b u_3 \theta_3 + \frac{1}{2} r^2 b u_{23} \theta_2 - \frac{1}{2} \dot{\theta}_3 + d_3 \\
(9)
\]

In (9) and (10), \(u_{23} \) is the muscle contraction unit of hamstrings (f3), \(u_2 \) is that of hip extensor muscles (e1), and \(u_3 \) is that of knee extensor muscles (e2).

The equilibrium point in steady-state condition is expressed as (11) and (12).

\[
\theta_2 = \frac{(u_3 + \frac{1}{2} u_{23}) D_2 + \frac{1}{2} u_{23} D_3 + \{ (u_3 + \frac{1}{2} u_{23}) \frac{\tau_2}{r_k} + \frac{1}{2} u_{23} \frac{d}{r} \}}{r_k \{(u_3 + \frac{1}{2} u_{23}) u_2 + \frac{1}{2} u_{23} (2 u_3) \}}
\]

\[
\theta_3 = \frac{\frac{1}{2} u_{23} D_2 + S_2 D_3 + \{ (u_3 + \frac{1}{2} u_{23}) \frac{d}{r_k} + S_2 \frac{d}{r} \}}{r_k \{ \frac{1}{2} u_{23} (u_2) + S_2 u_3 \}}
\]

In (11) and (12), \(D_2 = u_2 - u_{23}, S_2 = u_2 + u_{23}, D_3 = \frac{1}{2} u_{23} - u_3, S_3 = \frac{1}{2} u_{23} + u_3 \). In this case, the equilibrium point is set by antagonistic muscles in arbitrary. The effects from \(d_i \) can be suppressed if muscle contraction units \(u_i \) increase. It is like a exerting full strength of human’s motion.
There are two equations (11) and (12) compared with three variables, therefore \(\alpha = \frac{a_3}{u_{23}} \), \(\beta = \frac{a_3}{u_{23}} \) are given for replacement, as shown in (13) and (14).

\[
\theta_2 = \frac{(\beta + \frac{1}{2})(\alpha - 1 + \frac{1}{u_{23}} \frac{d_2}{r}) + \frac{1}{2}(\frac{1}{2} - \beta + \frac{1}{u_{23}} \frac{d_3}{r})}{r k (\alpha \beta + \frac{1}{2} \alpha + \beta)}
\]

\[
\theta_3 = \frac{\frac{1}{2}(\alpha - 1 + \frac{1}{u_{23}} \frac{d_3}{r}) + (\alpha + 1)(\frac{1}{2} - \beta + \frac{1}{u_{23}} \frac{d_3}{r})}{r k (\alpha \beta + \frac{1}{2} \alpha + \beta)}
\]

Here, \(\theta_2^* \) and \(\theta_3^* \) are used as reference equilibrium points. On the assumption that \(u_{23} \) has larger value, (13) and (14) can be expressed as (15) and (16) using \(\Theta_1 = r k \theta_1^* \).

\[
\alpha = \frac{1 + \Theta_2 - \frac{1}{2} \Theta_3}{1 - \Theta_2}
\]

\[
\beta = \frac{1 + \Theta_2 - \frac{1}{2} \Theta_3}{2(1 + \Theta_3)}
\]

\(\alpha \) and \(\beta \) can be uniquely specified if reference equilibrium points are given. \(u_{23} \) is freely chosen as a coefficient of total muscle intensity to suppress the effects of \(d_i \).

According to human walking, the muscle contraction intensity of hamstrings \(u_{23} \) gradually increases during the end of the swing phase. If the effects of \(d_i \) become larger, the swing leg is practically moved by passive dynamics with low actuator torques. If the effects of \(d_i \) become smaller, the swing leg is moved by actuator torques with precise control. It means that humans can switch the control mode between “passive” and “active” gradually by using \(u_{23} \).

VI. PARAMETER DETERMINATION FOR THE SIMULATION

In this section, actual muscle values are estimated for the simulation. The biped walking model is shown in Fig. 4 and Table I. The simulation was conducted in the initial posture \(\theta_1 = 110 \) deg, \(\theta_2 = -30 \) deg, \(\theta_3 = 15 \) deg. MATLAB/simulink have been employed for the simulation. The details of walking model such as an upper limb and feet are removed for simplicity.

As mentioned above, humans do not have the landing point consciously and there is no accurate control in the first part of the swing phase. For that reason, the hip joint torque is simply given to swing the leg in that time. For example, \(T_2 = k_0 \hat{\theta}_1 \) which is proportional to \(\hat{\theta}_1 \) with low pass filter to smooth the input torque. Besides, the stance leg illustrated in Fig. 4 is not actuated. It is driven by initial velocity \(\dot{\theta}_1 \) and passive dynamics.

The block diagram of the proposed method is shown in Fig. 5. Reference values are muscle contraction force of hamstrings \(u_{23} \) and landing angle of hamstrings \((\theta_2 - \frac{1}{2} \theta_3)^* \). According to a landing posture of stable walking of humans, the knee angle \(\theta_1^* \) is always extended. For this reason, the reference value of \(\theta_1^* \) is set to the fixed value \(\theta_1^* = -60 \) deg. It means that \(\theta_1^* \) is needed to set the landing point, but it is more natural to think the direction of straight line characteristics \((\theta_2 - \frac{1}{2} \theta_3)^* \).

A. Natural length \(l_0 \) and viscoelastic coefficients \(k \), and \(b \)

Here, the natural angle \(\theta_n \) is defined as the joint angle when the muscle length is natural \(l_0 \). It is the intermediate position of joint moving range in general, \(\theta_2m = 55 \) rad and \(\theta_3m = 65 \) rad. The authors have considered how \(\theta_n \) effects to the walking motion.

Let us suppose that the target landing position is given as \(\theta = p \) in Fig. 4. It means the reference value is given by \(\theta^* = p - \theta_n \). If the natural angle \(\theta_n \) changes, it is equivalent to change the reference angle \(\theta^* \). From (15) and (16), the ratio of muscle contraction \(\alpha \), \(\beta \) is varied by \(\theta^* \). When the value of \(\theta_2^* \) becomes large or \(\theta_3^* \) becomes small, \(\alpha \) and \(\beta \) also become large. In other words, the reference straight line angle \((\theta_2 - \frac{1}{2} \theta_3)^* \) is stepped forward, the intensity of muscle contraction becomes stronger simultaneously. This is an advantage of considering the natural angle because the effect of gravity term is getting higher together with the value of \((\theta_2 - \frac{1}{2} \theta_3)^* \) that being said gravity effect can be suppressed by stronger muscle contraction force automatically.

Viscoelastic coefficients \(k \) and \(b \) have been also estimated. From (2), real viscoelasticity of joints includes summation of antagonistic muscle contraction units. For that reason, it is difficult to measure the actual value of viscoelastic coefficients. However, the maximum value of \(k \) is limited on the condition that \(u_i \) must be positive in (13) and (14). As a result, \(k \) should be smaller than 30 N/m. In addition, the ratio of elasticity and viscosity is not influenced by muscle contraction units. For that reason, \(b \) can be estimated by \(k \), \(k = 10 \) N/m and \(b = 1.3 \) Ns/m are used in this simulation.

B. Muscle contraction force of hamstrings \(u_{23} \)

From human’s EMG pattern, \(u_{23} \) is proportional to time. It means that effective viscoelastic coefficients \(k' = k u_i \) and \(b' = b u_i \) will be larger in order to change transient characteristics. If \(u_{23} \) is increased proportionally, transient characteristics of \(\theta_i \) also change under-damped to over-damped because effective \(k' \) and \(b' \) increase in the same ratio. In addition, the effect

TABLE I	THE MATHE VARIABLES IN A BIPED WALKING MODEL FOR A CASE STUDY.		
symbol	value	symbol	value
\(a_1 \) (m)	0.47	\(b_1 \) (m)	0.33
\(a_2 \) (m)	0.20	\(b_2 \) (m)	0.20
\(a_3 \) (m)	0.20	\(b_3 \) (m)	0.20
\(M \) (kg)	40.0	\(m_1 \) (kg)	4.8
\(m_2 \) (kg)	4.2	\(m_3 \) (kg)	1.6
\(k \) (kgm\(^2\))	0.2571	\(\alpha \)	0.0434
\(f(u, \beta) \)	0.0217	\(r \) (m)	0.03

Fig. 5. Block diagram of the proposed method. \(f(\alpha, \beta) \) denotes the ratio of muscle contraction force calculated by (15) and (16).
of d_i can be suppressed gradually, therefore u_{23} changes the mode “passive” to “active” as mentioned above sections.

Time variable u_{23} is approximated, as shown in (17).

$$u_{23} = a(t - t_0)$$ \hspace{1cm} (17)

In (17), a is the coefficient of intensity, t is time and t_0 is initial time. In following simulation, the authors have determined $a = 1.0 \times 10^4$ and $t_0 = 0.2$ sec (about the middle of the swing phase).

VII. NUMERICAL STUDY FOR EVALUATION OF PROPOSED METHOD

A. Followability of the reference position

Generally, the most efficient walking speed is about $v = 1.0 - 1.5$ m/s [12]. Here, the walking speed is given by $v = 1.0$ m/s for each pattern. In the simulation, the authors have considered in the following three cases.

(I) Reference value is set to $(\theta_2^* - \frac{1}{2} \theta_3^*) = 30$ deg. (A stick diagram and position errors are illustrated in Fig. 6.)

(II) Reference value is set to $(\theta_2^* - \frac{1}{2} \theta_3^*) = 45$ deg. (A stick diagram and position errors are illustrated in Fig. 7.)

(III) Reference value is set to $(\theta_2^* - \frac{1}{2} \theta_3^*) = 15$ deg. (A stick diagram and position errors are illustrated in Fig. 8.)

As a result, position errors were nearly zero in all patterns. Therefore, the effects of d_i have been suppressed sufficiently.

B. Robustness under variable walking speeds v

Here, walking speed v is increased to $v = 1.2$ m/s.

(IV) Reference value is set to $(\theta_2^* - \frac{1}{2} \theta_3^*) = 45$ deg, position errors are illustrated in Fig. 9(a).

(V) Reference value is set to $(\theta_2^* - \frac{1}{2} \theta_3^*) = 15$ deg, position errors are illustrated in Fig. 9(b).

In the case of (V), position errors are left to some extent. This is because there is not enough settling time and the swing leg collide to the ground before errors are settled. For this reason, it is necessary to set the landing point to a distant place when walking speed is increased. However, it is same as the case of human walking. If humans walk more high speed, walking step needs to be enlarged [12].

As a result, there are some constraint on walking speed and walking step. It is necessary to change the muscle contraction ratio α and β to move the landing point farther.

C. Energy efficiency

The proposed control method is evaluated through comparison with conventional control method. In conventional method, joint angles θ_2 and θ_3 are set to the reference angle by PD controller. In order to evaluate under the same condition, PD gain is given by effective viscoelastic values in steady-state condition in case (I). Simulation conditions are the same as case (I) except for the control methods.

Position errors are illustrated in Fig. 10. Position errors are reduced quickly in the conventional method. However, passivity is sacrificed and steady-state errors are almost the same level as the proposed method. For that reason, there is no practical difference between them.

Input torques in the proposed and conventional methods are illustrated in Fig. 11. Comparing with the conventional method, peak torques are decreased in the proposed method, it is useful for reducing actuator size.

In addition, evaluation values of total energy consumption ($= \int |\tau\omega|dt$) are illustrated in Fig. 12. Total energy consump-
expected advantages of the proposed method, i.e., high energy consumption of the proposed method could be reduced by 50% compared with that in a conventional one.

Therefore, it has been cleared that landing position control with high energy efficiency can be achieved by the proposed method.

VIII. CONCLUSION

The authors have proposed a swing leg control method based on biological mechanisms and evaluated in advantages of better energy efficiency. Structure and patterns of muscle activation in biological legs were taken into account. A typical pattern of muscle activation has been observed from EMG waveforms, which implies the hamstrings play a major role in the motion in the swing phase.

Biological structure of lower limb and antagonistic muscles are significant in the muscle-based control for simplifying activation patterns. The proposed control method is based on the length and muscle contraction intensity of hamstrings.

The length of hamstrings contributes to the intuitive design of the landing position with the straight line relationship. The muscle contraction intensity of hamstrings also contributes to the variation of the leg viscoelasticity. A repeatable and stable biped walking motion is possible by using passive dynamics according to the proposed control method.

A case study has been numerically calculated to verify the expected advantages of the proposed method, i.e., high energy efficiency and landing position control assuming dimensions and structure identical to a human body. As a result, energy consumption of the proposed method could be reduced by 50% compared with that in a conventional one.

The numerical results have suggested the following problems to be improved in further studies. The proposed control method shall be applied to an experimental bench. The proposed activation pattern is valid just in slower walking motion. The EMG measurement shows different, more complicated activation patterns for faster motions. Therefore, it will be difficult to determine parameters because of redundancy of muscles. In addition, muscle activation patterns in the stance phase and touch-down phase are very important from the point of view of energy saving walking. The proposed method should be expanded for practical use.

REFERENCES