A non-causal approach for suppressing the estimation delay of state observer

Kentaro Tsurumoto^{*}, Wataru Ohnishi^{*}, Takafumi Koseki^{*}, Nard Strijbosch^{**}, Tom Oomen^{**,***} *The University of Tokyo ^{**}Eindhoven University of Technology ^{***} Delft University of Technology

Background and conceptual idea

Offline estimation of already executed systems

Simply applying the state observer does not utilize the whole data. \rightarrow The already provided future data is not used!

Backwards estimation using future data has an estimation advance.

By combining an estimation with a delay and an estimation with an advance, a suppressed delay estimation is realized!

Concept

Possible applications

- Offline phenomena analysis (e.g. cutting force estimation)
- Iterative Learning Control

Non-causal state observer

Backward estimation procedure

- 1. Construct an <u>unstable</u> state observer with a <u>same bandwidth</u> as the state observer used for the forward estimation.
- 2. Calculate the state equation backwards using stable inversion

$$\begin{split} \hat{x}[k] &= \hat{A}_d^{-1} \left(\hat{x}[k+1] - \hat{B}_d u[k] - L(y[k] - \hat{y}[k]) \right) \\ \hat{y}[k] &= \hat{C}_d \hat{x}[k] \end{split}$$

Composition of state estimation

The forward estimation \hat{x}_f and backward estimation \hat{x}_b are combined based on their covariance matrix of estimation.

Assuming the covariance matrix being P_f and P_b , the combined noncausal estimation \hat{x}_m is obtained by the following equation.

$$\hat{x}_m = lpha \hat{x}_f + (I-lpha) \hat{x}_b$$
 $lpha = P_b (P_f + P_b)^{-1}$

Experimental validation

Experimental setup

Novelty \rightarrow Application of stable inversion to an unstable observer, and combining it with an ordinary observer to achieve an effective state estimation for non-causal operations.

Future work \rightarrow Application to Iterative Learning Control.